一、报告题目:The well-posedness of the compressible subsonic jet flows
二、报告人:王晓慧 副教授
三、时 间:10月20日(周一)18:30-19:30
四、腾讯会议:612 294 486
报告摘要:This paper is concerned with the well-posedness of the compressible subsonic jet flows issuing from a semi-infinitely long nozzle, the free streamline detaches smoothly from the nozzle wall and the detachment is not known a priori. More specifically, given a semi-infinitely long de Laval type nozzle and an atmosphere pressure $p_{atm}>0$, there exist a critical value $m_{cr}>0$ and an interval $[\underline{p},\bar{p}]$, such that for any incoming mass flux $m_0\in(0,m_{cr})$ and the pressure difference $p_{dif}\in[\underline{p},\bar{p}]$, there exists a unique compressible subsonic jet flow and the detachment lies on the divergent part of the nozzle wall. Moreover, the detachment is continuous and strictly monotonic with respect to $p_{dif}$. Finally, we also establish the optimal $C^{1,\f12}$-regularity of the free boundary at the detachment.
报告人简介:王晓慧,2020 年7 月博士毕业于四川大学,2020 年8 月入职成都理工大学,2022年12月晋升为副教授。香港中文大学和香港城市大学访问学者。获批国家自然科学基金青年项目和数学天元基金项目;获批四川省自然科学基金青年项目和面上项目。主要从事于流体力学中Euler 方程组的自由边界问题相关方面的研究工作,在国际 SCI 学术期刊 J. Differential Equations, Commun. Math. Sci. 和 J. Math. Phys. 等上发表论文 10 余篇。
欢迎广大师生参加!联系人:胡燕波